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Independence of Automorphism Group, Center, and 
State Space of Quantum Logics 

M i r k o  N a v a r a  I 

Received March 2, 1990 

We prove that quantum logics (=orthomodular posets) admit full independence 
of the attributes important within the foundations of quantum mechanics. 
Namely, we present the construction of quantum logics with given sublogics 
(=physical subsystems), automorphism groups, centers (="classical parts" of 
the systems), and state spaces. Thus, all these "parameters" are independent. 
Our result is rooted in the line of investigation carried out by Greechie; Kallus 
and Trnkovrl; Kalmbach; and Navara and PUik; and considerably enriches the 
known algebraic methods in orthomodular posers. 

1. BASIC NOTIONS AND THE MAIN RESULT 

Let us first recall some basic notions; for more detail, see, e.g., Gudder  
(1979) and Kalmbach (1983). By a (quantum) logic we mean an 
or thomodular  poset. I f  it is a lattice, we call it a lattice logic. Throughout  
this paper, let us reserve the symbol L for logics. Two elements a, b ~ L are 
called orthogonal (abbr. a • b) if a -< b'. I f  K c L and K is closed under 
the formation of  orthocomplements and orthogonal joins in L, we call K 
a sublogic of  L or, alternatively, we call L an enlargement of  K. An 
automorphism of  L is a bijection o~: L o  L such that both a and o~ -1 preserve 
the orthoeomplements and the partial ordering (thus, they preserve also all 
joins and meets which exist in L). The automorphism group of  L is denoted 
by ~ ( L ) .  Two elements of  L are called compatible if  they are contained in 
a Boolean subalgebra of  L. By ~ (L)  we denote the center of  L, i.e., the set 
{c ~ L: c is compatible to all d ~ L}. By a state on L we m ean  a real-valued 
function s: L-> [0, 1] such that s (1 )=  1 and s(a v b) =s(a)+s(b)  for any 
orthogonal pair a, b ~ L. The set of  all states on L is denoted by O~ 
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The automorphism group, the center, and the state space are physically 
meaningful and important attributes of the logic (see, e.g., Gudder, 1979). 
Previous investigations led to the following results. The automorphism group 
of a logic can be an arbitrary group (Kalmbach, 1984; Kallus and Trnkov~i, 
1987). The center of a logic is a Boolean algebra [for further results, see, 
e.g., Brabec and Pt~ik (1982) and Gudder (1979)]. The state space can be, 
up to an affine homeomorphism, an arbitrary compact convex subset Of a 
locally convex topological linear space (Shultz, 1974). Besides their physical 
meaning, these results brought new construction principles into the study 
of quantum logics. It is natural to ask whether the structure of a logic 
induces some kind of dependence between these attributes. The indepen- 
dence of the center and the state space was proved in Ptfik (1983). [However, 
it should be noted that in special classes of logics--for instance, in the 
logics of projections in von Neumann algebras--the state space determines 
the center uniquely (Binder, 1986). Further, Kallus and Trnkovfi (1987) 
exhibit a construction of logics with given automorphism groups and given 
atomistic sublogics. Navara et al. (1988) present a construction of  logics 
with given centers, state spaces, and sublogics. Here we prove the following 
strengthening of the latter results. 

Main Theorem. Suppose that K is a logic admitting at least one state, 
G is a group, C is a compact convex subset of a LCTLS, and B is a Boolean 
algebra. 

Then there is a logic L such that K is a sublogic of L, the group of 
automorphisms of L is isomorphic to G, the state space of L is affinely 
homeomorphic to C, and the center of L is Boolean isomorphic to B. 

The proof in the following sections is nontrivial and quite technically 
involved. Though I have striven for self-containedness of the proof, the 
reader familiar with Kallus and Trnkov~i (1987), Navara et al. (1988), and 
Navara and Rogalewicz (1991) will find its reading more comfortable. Also, 
the verification of details which is left to the reader in some places will be 
easier if one has gone through the cited papers. 

2. NOTIONS AND BASIC TECHNICAL TOOLS 
i, 

Prior to the proof of our result, let us recall some more notions and 
facts (Gudder, 1979; Kalmbach, 1983). A maximal Boolean subalgebra B 
of L is called a block; if B is isomorphic to 2 n for n ~ N, we call it a 2n-block. 
A logic is called chain-finite if all its blocks are finite. The logic {0, 1} is 
called trivial. If a, b e L, a---b, we put [a, b]L = {c ~ L: a---c---b} and call 
the set [a, b]L an interval in L. The interval [0, b]L becomes a logic if it is 
endowed with the partial ordering inherited from L (Kalmbach, 1983).~ An 
element a of L is called an atom if [0, a l l  = {0, a}. To avoid confusion, we 
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sometimes indicate by indices which logic we refer to, e.g., 0L, 1L, - L ,  ,L, 
AL~ VL,  -1- L.  

Recall now basic constructions with logics. 
Given a collection ~ = {L~: a E I} of  logics, we call the Cartesian 

product  L = r I ~ z  L~ a product of  ~ if it is endowed with the "pointwise" 
partial ordering and orthocomplementation,  i.e., for all a, b c L we have 
a -<L b (resp. a = b 'L) iff a(a) <-L~ b(a) [resp. a(a) = b(a )  'L~] for  all t~ ~ L 

Another useful construction is the pasting. 

Definition 2.1 (Navara and Rogalewicz, 1991). Let ~ be a collection 
of  logics such that for each P, Q ~ ~ the intersection P c~ Q is a sublogic 
of both P and Q and, moreover, the orthocomplementations and the partial 
orderings coincide on P c~ Q. Put L = [.-)P~Ze P and define the binary relation 
<L and the unary operation ,L as follows: 

a --<L b (resp. a = b 'L) iff a ---p b (resp. a = b 'e) for some P c 

The set L equipped with -<L, ,L is called the pasting of  the collection 5~. 

The pasting need not be a logic in general. We recall a sufficient 
condition for this to hold. 

Theorem 2.2 (Navara and Rogalewicz, 1991, Propositions 4.1 and 
4.2). Let L be the pasting of  a col lect ion ~ of  logics which satisfies the 
following conditions: 

(El)  VP, Q c ~ 3 a  ~ P n Q: P n Q = [0, a]e u [a', 1 ] t .  

(T2) 3 w ~ v P ,  Q ~ , P # Q : P c ~ Q c  w. 

Then L is a logic and each block of L is a block of  some logic of  the 
collection ~.  

In the definition of  the pasting we have supposed that the logics of the 
collection ~ already have some common elements (at least 0 and 1). 
Alternatively, we can start with a collection of  disjoint logics and form the 
pasting after identifying the elements of appropriate isomorphic sublogics. 
We shall often deal with the following two special cases: 

1. In a collection ~ of disjoint logics we identify all zeros and also all 
units. The pasting of these logics is then called the horizontal sum of  the 
collection ~ (Kalmbach, 1983). Let us call a logic irreducible if  it cannot 
be expressed as a horizontal sum of nontrivial logics. Obviously, each 
nontrivial logic L admits a decomposition to a horizontal sum of  nontrivial 
irreducible logics called the summands of  L. 

2. In the collection ~ of  disjoint logics we identify not only all zeros 
and units, but also some atoms of different logics of  ~ (and, necessarily, 
also their orthocomplements).  Then we form the pasting. We say that we 
have pasted the collection ~ by identifying the respective atoms. 
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Theorem 2.3 (Navara and Rogalewicz, 1991, Theorem 6.1). Let K, L 
be logics. Suppose that a is an atom in K. Write b = a '~c. Put M = [0, b]K x L. 
For all c e [0, b]x, let us identify c ~ K with (c, 0L) e M and c v fc a e K with 
(c, l L ) e M .  The pasting P of  K and M is then a logic. We say that P 
originated by the substitution of the atom a in K with the logic L. 

3. PROOF OF THE MAIN THEOREM 

First we prove some special cases and then we shall use them in the 
proof of the general case. We construct stateless, resp. single-state logics 
(i.e., logics whose state spaces are empty, resp. singletons) and rigid logics 
(i.e., logics with no automorphisms different from the identity). 

Lemma 3.1. Let K be a chain-finite lattice logic. Then there is a proper 
class ~ of  enlargements of K such that each L ~ ~ satisfies the following 
two conditions: 

(A1) L is rigid 
(A2) L is irreducible and chain-finite. 

Moreover, we may ensure that all the blocks of  L which are not in K are 
of the form 2 3 . 

Proof. See Kallus and Trnkov~ (1987). The ideas of  the proof will 
appear (in a modified and stronger form) also in the proof of Lemmas 3.3 
and 3.4. �9 

Corollary 3.2. There is a proper class ~o of stateless logics which satisfy 
the conditions (A1), (A2). There is also a proper class ~1 of logics which 
satisfy (A1), (A2) and admit exactly one state. Moreover, this (unique) state 
is two-valued. In addition, we may ensure that the logics of ~o have only 
23-blocks and 24-blocks, and the logics of  ~1 have only 24-blocks and 
2S-blocks. 

Proof. To obtain ~o,  one takes the finite stateless lattice logic construc- 
ted in Greechie (1971). Let us call it K and apply Lemma 3.1. The product 
of a stateless logic and the trivial logic is a single-state logic (Pt~ik, 1987). 
Thus, the class of  logics of the form L x { 0 , 1 } , L ~ o ,  can be taken 
for ~1. �9 

We call the blocks of  the form 2 n small blocks if n -< 5; all other blocks 
are called large blocks. The following lemma yields single-state logics with 
given automorphism groups. 
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Lemma 3.3. Let G be a group. Then there is a proper class ~ of logics 
such that each L E ~ satisfies the following four conditions: 

1. ,.~(L)~G. 
2. card ~(L) = I. 
3. L is irreducible and has only small blocks. 
4. for any a E L-{0} and any a ~ ~(L) we have a = a(a) or 

ava(a)=1. 

Proof. We start with the logic D~6 corresponding to the Greechie 
diagram in Figure la (Greechie, 1971). Applying Corollary 3.2, we take 
three nonisomorphic finite logics LI, L2, L3 which are rigid and single-state. 
For i = I, 2, 3, let us denote by di the (only) atom on which the state on Li 
attains I. Further, let us paste together LI, L2, L3, and D~6 by identifying 
the atoms ai with d~ for i = I, 2, 3--see Figure lb. We obtain a rigid logic 
M with exactly one state (attaining the value I on al, a2, a3, and the value 
0 o n  b,c). 

According to Sabidussi (1960), there is a proper class of directed 
connected graphs whose automorphism groups are isomorphic to (3. 
Sabidussi's original result is formulated for undirected graphs. If we replace 
each undirected edge with two directed edges, we obtain the latter result. 
Let (V, E) be such a graph. Replacing each edge (b, c) of E with a copy 
of the Greechie diagram of M (Figures lb and lc) we obtain the Greechie 
diagram of the logic L. More precisely, for each (u, v) ~ E we take a copy 
Mu.v of M with atoms b,,~, cu, v s M~.v corresponding to b, c ~ M. We paste 
the collection {M.:: (u, v) ~ E} by identifying the following pairs of atoms: 

b~,~ with b,,w for all (u, v), (u, w) ~ E 
Cu: with ct,~ for all (u, v), (t, v) ~ E 
bu,~ with ct,. for all (u, v), (t, u) ~ E 

The pasting is the desired logic L. Indeed, the automorphism group 
did not change by this procedure. Further, the property (4) follows from 

b r  

ml eQ2 ~ 
b �9 

:I,, ,2"t = 
i / ~'~ 

a b e 

Fig. 1 

b C 
o ~-~ 
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the fact that for each block A o f  L and each a E M ( L )  we have either 
A =  oe(A) or A n  a ( A ) =  {0, 1}. The remaining assertions can be verified 
easily. I 

We are now ready to construct rigid logics with given state spaces. 

L e m m a  3.4. Let K be a chain-finite logic. Then there is a p roper  class 
of  logics such that each L~ ~ satisfies the following four conditions: 

1. K is a sublogic of  L. 
2. card M ( L )  = 1. 
3. Each state on K has a unique extension to L. 
4. L is irreducible. 

Proof. Without any loss of  generality, we may suppose tha t  K has only 
large blocks. This can be achieved by the substitution of  appropriate atoms 
with single-state logics (Theorem 2.3). The resulting chain-finite logic has 
the same state space as K and K is its sublogic. 

Denote by A the set of  all atoms of  K. Corollary 3.2 enables us to find 
a single-state rigid logic M. Moreover, M can be chosen so large that there 
is a s e t ~  ={da: a c A} of  atoms in M with the following properties: 

1. The state on M vanishes at all elements of  9.  
2. ~ Contains no orthogonal pair. 

For  all a s A, let us denote by Pa the copy of  the Boolean algebra 2 3 with 
atoms a, da, and e a [ = ( a  v da)']. We take for L the pasting of  the logics K, 
M, and Pa, a ~ A (of course, we first identify the zeros and units of  these 
logics). 

Every automorphism of  L maps large blocks onto large blocks. Hence, 
it maps K onto K. It also maps [~-Ja~A Pa onto itself (because Pa are the 
only 2S-blocks whose one atom is contained in a large block) and M onto 
M. Any automorphism of  L has to coincide with the identity on M and 
hence also on ~ and o n  [..Java Pa- So it has to coincide with the identity 
also on K and on the whole L. The remaining assertions are easy to 
prove. [] 

While the pasting by identifying pairs of atoms applies well to chain- 
finite logics, we shall need a more general pasting technique for arbitrary 
logics. 

L e m m a  3.5. Let K be a logic with 5e(K) ~ •. Then there is a logic L 
such that the following three conditions are fulfilled: 

1, K is a sublogic of  L. 
2. card M ( L )  = 1. 

3. card ~ ( L )  = 1. 
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Proof. As in the proof  of  Lemma 3.4, we may assume that K has only 
large blocks. We take two stateless logics of  Corollary 3.2 such that they 
are nonisomorphic to each other and nonisomorphic to any interval 
[0, a]K(a~ K). Their product  constitutes a stateless rigid logic P having 
only large blocks. 

According to Marlow (1978), we can choose an M-base ~t in K. (~[ 
is a maximal subset of  K containing no orthogonM pair.) It is known that 
K = ~t u J / ' ,  where ~ ' =  {b': b ~ JR}. For each a e ~ ' ,  let us take a logic 
Qa = [0, a]K x P x {0, 1}. We now identify each b ~ [0, a ] r  with (b, 0, 0) ~ Qa 
and we also identify the respective orthocomplements.  We denote by e, the 
atom (0,0, 1 ) s Q ,  and by ~ the set { e ~ : a ~ ' } .  

According to Theorem 2.2, the pasting M = K u (_Ja~, Q, is a logic. 
[This step is described in more detail in Navara et al. (1988). The requirement 
that .4/is an M-base is used to satisfy the condition (L1) in Theorem 2.2.] 
Notice that M has only large blocks. Each state on K has a unique extension 
to M. On the other hand, each state on M is uniquely determined by its 
values on ~, because P is stateless and ~t u ~ t ' =  K. 

We shall prove that the only automorphism of  M which coincides with 
the identity on ~ is the identity on M. If  an automorphism preserves some 
e~ ~ ~, it maps Q, onto itself (because Q~ is the set of  all elements of  M 
compatible with e~ and the compatibility is preserved by all automorphisms). 
According to the construction of  P, it maps [0, a]K (as a subset of  Q,)  onto 
itself (because it maps factors of  a product  onto factors) and a onto a. So 
the automorphism coincides with the identity on ~ ' .  Hence it coincides 
with the identity on the whole K and on M as a consequence. 

We shall now construct a collection { U~:a s ~/l'} of mutually non.- 
isomorphic single-state logics with further special properties. We take a 
single-state logic S (from Corollary 3.2) with an atom b on which the state 
attains the value 1. We take the logic/-/3 of  projections in a 3-dimensional 
Hilbert space and we paste S wi th / /3  by identifying b with an atom of  H3. 
The resulted logic is denoted by U. According to Gleason's theorem 
(Gleason, 1957), U is a single-state logic. As in Lemma 3.4, U can be 
enlarged to a rigid single-state irreducible logic. We can easily modify the 
proof  of  Lemma 3.4 so that the blocks of  Ha remain 23-blocks. (We omit 
the substitution at the very beginning of the proof  which led to large blocks. 
All arguments concerning the automorphism group of  the resulting logic 
remain valid. The only 23-blocks are the blocks of Ha and the blocks which 
are denoted by P~ in the proof  of  Lemma 3.4. The latter have only one 
atom common with other 23-blocks, so they are distinguished from the 
blocks of  Ha by a property which is preserved by all automorphisms.) Again, 
there is a proper  class of  such extensions. Thus we can find a family of  
mutually disjoint and nonisomorphic enlargements { Ua : a ~ J/~'} of  U which 
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are rigid, single-state, and irreducible. Moreover, U~ contains only small 
blocks. For any real number r e  [0, 1] there is an atom of U~ on which the 
state on U~ attains the value r. 

We fix a state s on M and for each a e ~ '  we choose an atom Ua ~ U~ 
on which the state on U~ attains the value S(ea). Then we paste M with 
U~ (a e 2g') by identifying the atoms e~ with uo. We obtain a logic L. 

Each state on L coincides with s on if and hence it coincides also on 
M. The extension of s to all U~ (a e ~ ' )  is possible and unique and it gives 
the only state on L. All small blocks of L are exactly the blocks of  the logics 
Uo(a ~ ~ ' ) .  The Greechie diagram of Uo is connected, but U~ and Ub (for 
a # b) are not connected by small blocks. Hence, each automorphism maps 
each Ua (a ~ ~t') onto some Uy(~), where f (a )  ~ ~ ' .  Since the logics U~ 
(a e ~ ' )  are rigid and mutually nonisomorphic, we have f (a )  = a and each 
automorphism of  L must coincide with the identity on [..Ja~, Uo. But this 
union contains also the set if and so L is rigid. �9 

The Proof of the Main Theorem. We start with the given logic K. 
According to Lemma 3.5, there is a rigid single-state enlargement K1 of K. 
Lemma 3.3 gives a single-state logic/(2 with ~t(K2) -- G. According to Shultz 
(1974), there is a chain-finite logic whose state space is affinely homeomor- 
phic to C. Applying Lemma 3.4, we obtain a rigid logic /(3 with 9~ 
affinely homeomorphic to C. The logics K2, K3 are irreducible and we can 
choose them (from the proper classes of  such logics) so that they are 
nonisomorphic to each other and nonisomorphic to any summand of K1. 

Consider the horizontal sum H of K1, K2, and / (3 .  It contains K as 
a sublogic. Moreover, i f (H)  is aitinely homeomorphic to C. The automorph- 
isms of  H map summands onto (the same) summands and they may differ 
from the identity only on the summand /(2. Hence, ~ t ( H ) -  ~t(K2)--G. 
The center of H is {0, 1}. 

By the application of Lemma 3.5 we obtain a rigid enlargement M 
of H. 

Without any loss of  generality we may assume that the Boolean algebra 
B is represented by clopen subsets of its Stone space X. Let us fix one point 
z ~ X. Denote by I the ideal {A ~ B: z ~ A}. According to Corollary 3.2, we 
can find a collection of irreducible stateless rigid logics {PA : A ~ I} which 
are nonisomorphic to each other and to any summand of M. For all x ~ X 
we define the logic Qx as follows: We put Qz = H and for Qx (x ~ z) we 
take the horizontal sum M u U{PA : A ~ I, x ~ A}. We define a subset Lo of 
the product Q = l-Ix~x Qx consisting of all functions f e  Q such that the 
range f ( X )  is finite and f is measurable with respect to B [i .e. ,  f - l ( a ) ~  B 
for all a e f ( X ) ] .  To prove that L0 is a sublogic of Q, we need to verify that 
it is closed under the formation of orthocomplements, which is obvious, 
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and that it is closed under  the formation of  orthogonal joins in Q. Suppose 
that f, g ~ L o  and f i g .  The collection { f - l ( c ) n g - l ( d ) :  c ~ f ( X ) ,  d e  
g ( X ) } c  B is a finite coveting of  X by sets on which both f and g are 
constant. We need to prove that c vQxd (where c •  does not depend 
on the choice of  x ~ f - l ( c )  n g-l(d). The case when c = 0 or d = 0 is trivial. 
I f  c ~ 0 ~ d, the orthogonality of  c and d implies that they belong to the 
same summand, say S, of  Qx. Then c v ox d = c v s d in each logic Qx contain- 
ing {c, d} [in particular, for  x s f - l ( c )  n g- l (d ) ] .  Hence, f v o g ~ L0 and Lo 
is therefore a logic. 

We take for L the set of  all functions h ~ Q for which there is a n f ~  L0 
and a s ~ ( H )  (recall that H =  Qz) satisfying h(x) - - f (x )  for x ~ z and 
h(z) = af(z). To prove that L is a logic, it again suffices to show that L is 
closed under  the orthogonal joins in Q. I f  {z} ~ B, then L--  Lo. Suppose 
that {z}~B and h, k ~ L , h •  Denote by f (resp. g) the element of  Lo 
coinciding with h (resp. k) On X -{z}  and by a (resp./3) the automorphism 
of  H satisfying h(z)= af(z) [resp. k(z)--/3g(z)]. We put a - - f ( z )  and 
b = g(z). The set f - l ( a )  n g-~(b) ~ B contains a point different from z and 
hence a • b. This implies f •  g. We need to find an automorphism of  H 
mapping ( f  v O g)(z) = a v~ b onto (h v o k)(z) = a(a) vH/3(b). We claim 
that at least one of  the automorphisms a,/3 has this property. The case 
when a = 0 or b = 0 is trivial. Suppose therefore that a ~ 0 # b. We have 
/ 3 (b ) •177  The nonzero elements a(b) and /3 (b )  have a com- 
mon upper  bound (a  (a)) '  # 1. The automorphism/3 o a - '  maps a (b) onto 
/3(b). This, together with Lemma 3.3(4), gives that a(b)=/3(b) and 
a(a) v H f l ( b ) =  a(a vn b). We have proved that L is a logic. The logic K 
is isomorphic to the sublogic of  all constant functions from X to K. 

All logics Qx, x s X, have trivial centers. It is easily seen that each 
function f ~  L attaining a value different from 0 and 1 is noncompatible 
with some other element of  L. Thus, CO(L) contains only the characteristic 
functions of  the sets of  B and CO(L) ---- B. 

We shall now prove that b~(L) is affinely homeomorphic  to 5e(Qz) 
[ = i f ( H ) ] .  Suppose that A s I. Denote by hA ~ L the characteristic function 
of  A. The interval [0, hA]L is a logic and all functions from X to PA vanishing 
at X -  A and attaining constant values on A form a stateless sublogic of  
[0, hA]L. ThUS, each state on L vanishes at [0, hAIL for all A s  I. The ideal 
I of  ~r is the kernel of  each state on L. The factorization (Kalmbach, 
1983) of  L over I gives Oz. This factorization induces naturally an affine 
homeomorphism between b~(L) and 5~(Qz). 

To check the automorphism group, we shall show that we can "recon- 
struct" the factors of  the product  I]x~x Qx from the structure of  the logic 
L. Each x e X corresponds to a maximal ideal, say Ix, of  CO(L). The logic 
Q~ is the result of  the factorization L/Ix. Suppose that a ~ ~r The 
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restriction a l~(L)  maps maximal ideals [of CO(L)] onto maximal ideals. 
Hence, it is induced by a pointwise mapping of X onto X. In view of the 
fact that the logics Qx, x E X, are mutually nonisomorphic, we conclude 
that al~C(L) is the identity. For each x ~ X ,  a induces canonically an 
automorphism or/Ix of L~ Ix = Qx. For x ~ z, a~ Ix coincides with the identity, 
and a/l~ ~ M(Q~). Thus, ~r is a subgroup of M(Q~)= ~r On the 
other hand, suppose that/3 ~ M(H). The mapping a : L--> L defined by the 
formulas 

o~(f)(x) = f ( x )  for x #  z 

or(f )(z) =/3( f (z ) )  

is an automorphism of L and/3 = a/Iz.  We have proved that M (L) ~ M (H) --- 
G. The proof is complete. �9 

4. FINAL REMARKS AND RELATED QUESTIONS 

In all the sources I cite here the logics with given properties were also 
lattices. It is natural to ask whether the logic L in the Main Theorem may 
be a lattice provided that K is a lattice logic. We can prove this under the 
additional assumption that the Boolean algebra B has at least one atom. 
The atom corresponds to a singleton in the Stone space of B and we take 
for z this point. Then the logic Lo appearing in the proof of the Main 
Theorem has the required properties. Nevertheless, I do not know of a 
general construction of lattice logics with given centers and automorphism 
groups. 

If we consider o'-logics (=cr-orthomodular posets) and the spaces of 
o--additive states on them, the situation appears to be much more compli- 
cated. Partial results were obtained in Navara and Pt~k (1988). 

It should be noted that Trnkovfi (1988) studied also the independence 
of other groups related to logics, e.g., the group of affine homeomorphisms 
of the state space, etc. 

A reasonable model of a physical system should admit enough states. 
If it contains "sufficiently many" two-valued states, we can transfer the 
problem to set-representable logics [concrete logics; see Pt~ik and Wright 
(1985). For this case the question of the independence of centers and 
automorphism groups is investigated in Navara and Tkadlec (1991). 
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